Основы проектирования баз данных

Создание базы данных и таблиц

Последнее обновление: 02.07.2017

Качество проектирования базы данных может влиять на работу с ней. С хорошо спроектированной базой данных легче работать, легче писать к ней запросы. И в данном руководстве мы рассмотрим основные принципы проектирования баз данных.

Для качественного проектирования базы данных существуют различные методики, различные последовательности шагов или этапов, которые во многом похожи. И в целом мы можем выделить следующие этапы:

  1. Выделение сущностей и их атрибутов, которые будут храниться в базе данных, и формирование по ним таблиц. Атомизация сложных атрибутов на более простые.

  2. Определение уникальных идентификаторов (первичных ключей) объектов, которые хранятся в строках таблицы

  3. Определение отношений между таблицами с помощью внешних ключей

  4. Нормализация базы данных

На первом этапе происходит выделение сущностей. Сущность (entity) представляет тип объектов, которые должны храниться в базе данных. Каждая таблица в базе данных должна представлять одну сущность. Как правило, сущности соответствуют объектам из реального мира.

У каждой сущности определяют набор атрибутов. Атрибут представляет свойство, которое описывает некоторую характеристику объекта.

Каждый столбец должен хранить один атрибут сущности. А каждая строка представляет отдельный объект или экземпляр сущности.

Восходящий и нисходящий подходы

При проектировании базы данных на этапе выделения сущностей и их атрибутов мы можем использовать два подхода: восходящий и нисходящий.

Восходящий подход предусматривает выделение необходимых атрибутов, которые надо сохранить в бд. Затем выделенные атрибуты группируются в сущности, для которых впоследствии создается таблицы. Такой подход больше подходит для проектирования небольших баз данных с небольшим количеством атрибутов.

Например, нам дана следующая информация:

Том посещает курс по математике, который преподает профессор Смит.
Сэм посещает курс по математике, которые преподает профессор Смит.
Том посещает курс по языку JavaScript, который преподает ассистент Адамс.
Боб посещает курс по алгоритмам, который преподает ассистент Адамс.
Сэм имеет следующие электронный адрес sam@gmail.com и телефон +1235768789.

Какие данные из этой информации мы можем сохранить: имя студента, название курса, учебная должность преподавателя, имя преподавателя, электронный адрес студента.

Затем мы можем выполнить группировку по сущностям, к которым относятся эти данные:

Студент

Преподаватель

Курс

Имя студента

Название курса

Дата рождения студента

Электронный адрес студента

Телефон студента

Имя преподавателя

Должность преподавателя

Название курса

Имя студента

Имя преподавателя

Название курса

Так, те данные, которые имеются позволяют выделить три сущности: студент, преподаватель и курс. При этом мы вполне можем добавлять какие-то недостающие данные. Также следует отметить, что какие-то данные могут иметь отношение к разным сущностям. Например, курс хранит информацию о студенте, которые его посещает. А студент хранит информацию о посещаемом курсе. Подобная избыточность данных решается на последующих шагах проектирования в процессе нормализации базы данных.

Но подобных атрибутов может оказаться очень много: сотни и даже тысячи. И в этом случае более оптимальным будет нисходящий подход. Данный подход подразумевает выявление сущностей. Затем происходит анализ сущностей, выявляются связи между ними, а потом и атрибуты сущностей.

То есть в данном случае мы могли бы сразу определить, что нам надо хранить данные по студентам, курсам и преподавателям. Затем в рамках каждой сущности выявить атрибуты

Например, у сущности "Студент" мы могли бы выделить такие атрибуты, как имя студента, его адрес, телефон, рост, вес, год его рождения. В тоже время нам надо учитывать не вообще все свойства, которые в принципе могут быть у сущности "Студент", а только те, которые имеют значение в рамках описываемой системы. Вряд ли в данном случае играют роль такие свойства как рост или вес студента, поэтому мы можем их вычеркнуть из списка атрибутов при проектировании таблицы.

Иногда подходы комбинируются. Для описания разных частей системы могут использоваться разные подходы. А затем их результаты объединяются.

Атомизация атрибутов

При определении атрибутов происходит разделение сложных комплексных элементов на более простые. Так, в случае с именем студента мы можем его разбить на собственно имя и фамилию. Это позволит впоследствии выполнять операции с эти подэлементами отдельно, например, сортировать студентов только по фамилии.

То же самое касается адреса - мы можем сохранить весь адрес целиком, а можем разбить его на части - дом, улицу, город и т.д.

В то же время возможность разделения одного элемента на подэлементы не всегда может быть востребованной. В ряде задач это может быть просто не нужно. Выделять необходимо только те элементы, которые действительно нужны.

В соответствии с этим аспектом мы можем выделить у сущности "Студент" следующие атрибуты: имя студента, фамилия студента, год рождения, город, улица, дом, телефон.

Домен

Каждый атрибут имеет домен (domain). Домен представляет набор допустимых значений для одного или нескольких атрибутов. По сути домен определяет смысл и источник значений, которые могут иметь атрибуты.

Домены могут отличаться для разных атрибутов, но также несколько атрибутов могут иметь один домен.

Например, выше были определены атрибуты сущности Студент. Определим используемые домены:

  • Имя. Домен представляет все возможные имена, которые могут использоваться. Каждое имя представляет строку длиной максимум 20 символов (маловероятно, что нам могут встретиться имена свыше 20 символов).

  • Фамилия. Домен представляет все возможные фамилии, которые могут использоваться. Каждая фамилия представляет строку длиной максимум 20 символов.

  • Год рождения. Домен представляет все года рождения. Каждый год является числовым значением от 1950 до 2017.

  • Город. Домен представляет все города текущей страны. Каждый город представляет строку длиной максимум 50 символов.

  • Улица. Домен представляет все улицы текущей страны. Каждая улица представляет строку длиной максимум 50 символов.

  • Дом. Домен представляет все возможные номера домов. Каждый номер дома является числом от 1 до, скажем, 10000.

  • Телефон. Домен представляет все возможные телефонные номера. Каждый номер является строкой длиной в 11 символов.

Определяя домен, мы сразу видим, какие данные и каких типов будут хранить атрибуты. Какое-то другое значение, которое не соответствует домену, атрибут иметь не может.

В примере выше каждый атрибут имеет свой домен. Но, домены могут совпадать. Например, если бы сущность содержала бы следующие два атрибута: город рождения и город проживания, то домен бы совпадал и был бы одним и тем же для обоих атрибутов.

Определитель NULL

При определении атрибутов и их домена необходимо проанализировать, а может ли у атрибута отсутствовать значение. Определитель NULL позволяет задать отсутствие значения. Например, в примере выше у студента обязательно должно быть какое-либо имя, поэтому недопустима ситуация, когда у атрибута, который представляет имя, отсутствует значение.

В то же время студент может не иметь телефонного номера или в рамках системы телефон не обязателен. Поэтому на этапе проектирования таблицы можно указать, что данный атрибут позволяет значение NULL.

Как правило, большинство современных реляционных СУБД поддерживают определитель NULL и позволяют задать его допустимость для столбца таблицы.

Помощь сайту
Юмани:
410011174743222
Перевод на карту
Номер карты:
4048415020898850